
Physics of Medical X-Ray Imaging (1)  Computed Tomography 

Computed Tomography 
 
CT.1 Historical Background.  Johann Radon showed in 1917 that 2-D section images could be 
reformulated using mathematical transformation of projection data (i.e. using a Radon 
transform).  Projection data are line integrals (summations of image values) recorded across an 
object at some angle (Figure 1).  The link between projection data and x-ray images (maps of the 
effects of attenuation) was not obvious.  However, motivation was high since section x-ray 
images would have the ability to make high contrast section images of the body by removing 
interference from overlapping tissues. Later in this chapter we will see how the projection 
dilemma was resolved.  Even with the knowledge of how to make x-ray images into projections, 
imaging instrumentation and computing power was not able to provide this capability early on, 
so we had to wait many years for technology to catch up with the theory.  By the 1960s several 
research labs were able to reconstruct x-ray section images from x-ray projections acquired from 
physical objects, and these successes spurred intensive research into devices that could be used 
in humans.  In the 1970s x-ray computed tomography (CT) was formally introduced for clinical 
use, which was followed by rapid technological refinement. Since reconstructed images looked 
like the thinly sliced tissue sections used for microscopic inspection, the term "Tomography", 
literally meaning a picture of a cut section, was adopted, and early x-ray tomographic imaging 
systems were called Computed Axial Tomographic or “CAT” scanners.  However, common use 
has dropped this designation in favor of computed tomography or just CT.  In 1979 two early 
researchers in the field, A. M. Cormack and Godfrey Hounsfield, were jointly awarded the Nobel 
Prize for Computed Tomography. 
 

Figure 1b illustrates the set of projections [pθ(r)] for θ = 0 to 180 degrees from the CT image in 
1a.  The top row in 1b is at 0 degrees and the bottom row at 180 degrees. Columns (r) index 
positions within projections.  Sinusoidal paths formed by landmarks 1 & 2 lead us to call this 
image a sinogram. The 0-degree projection is a view from the bottom, while the 90-degree 
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Figure 1.  A CT image (a) and its projections pθ(r) (b) presented as an image called a 
sinogram. 
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projection a view from the right. Values at each r in projection pθ(r) are the result of integration 
across the object along a line perpendicular to the projection (i.e. line integrals). 
 
The goal of CT imaging of the body is to obtain a set of 2-D serial section images, on(x,y), from 
the body’s 3-D object o(x,y,zn).  During reconstruction the z extent of the object (Δz) is 
collapsed into a 2-D section image.  For simplicity, a tomographic image will always be treated 
as a 2-D function realizing that integration along the z-extent of each section image is involved. 
 
CT.2 Theory. Fourier transform theory provides a good theoretical approach to understanding 
the Radon transform and more generally tomographic reconstruction of images from projections.  
The basis for this explanation is provided in the following equations: 
  
 O(u, v) = o(x, y)e−2πi( ux+ vy)dxdy∫∫        (CT-1) 
 O(u, v) = ℑ o(x, y){ }    (shorthand notation) 
 
 o(x, y) = O(u, v)e2πi( ux+ vy)dudv∫∫        (CT-2)

 o(x, y) =ℑ−1 O(u, v){ }  
 
where the integration is performed over the 
domains of o(x,y) and O(u,v).  These 
equations (seen in earlier chapters) form a 
Fourier transform pair.  Either O(u,v) or 
o(x,y) can be calculated from the other and 
therefore each must contain a complete 
description of the object they represent 
(Figure 2).  Conceptually if we are able to 
obtain O(u,v) then we can then compute 
o(x,y) using Eq. CT-2. The following 
discussion focuses on how to obtain O(u,v) 
from projections. 
 
Figure 2 illustrates the correspondence 
between spatial and frequency domain representations of a CT section image in the head.  
Coordinate origins are assigned to the center of the image arrays for both domains. This is taken 
to be the axis of rotation for imaging (x-ray CT, SPECT, and PET).  Image spatial coordinates 
(x,y) are expressed in mm and corresponding frequency coordinates (u,v) in lp/mm. While the 
spatial object function o(x,y) is always real, the frequency object function O(u,v) is usually 
complex.  Only the magnitude of O(u,v) is illustrated, but in general it is composed of both a 
magnitude and phase (or real and imaginary) parts. 
 
The equation for mapping a point in the x-y image to a point in the r-θ sinogram (Figure 1) is as 
follows: 
 
 r(θ) = rxy • cos(φ −θ)         (CT-3) 
where  
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Figure 2.  The spatial domain o(x,y) and frequency 
domain |O(u,v)| representations for a head CT study.  
Log10 |O(u,v)| was used in this figure to better 
illustrate the higher frequency terms. 
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with rxy the distance from the origin to the point x,y, ø the counter-clockwise (CCW) angle from 
the positive x-axis to the point, and θ the angle of the projection.  The three parameters of Eq. 
CT-3 determine the key features of the sinusoidal path followed by a point in the object: 
 
• The amplitude of the sinusoid is 

equal to its distance from the axis 
of rotation (rxy). 

• The phase of the sinusoid is 
determined from its starting 
phase φ. 

• The sinusoid is theoretically fully 
defined over a range of θ from 0 
to π or 180 degrees. 

 
The feature of the Fourier transform 
that provides greatest insight into 
transforms needed for computed 
tomography is the central slice 
theorem.  This theorem states that 
the Fourier transform of the 
projection pθ(r) in the spatial domain 
is identical to the profile Pθ(s) in the 
2-D Fourier domain (Figure 3).  
Here “r” corresponds to the distance 
from the origin measured in the spatial domain and “s” the distance from the origin in the spatial 
frequency domain. A calculation of the frequency domain profile from Eq. CT-1 where v = 0 is 
helpful to illustrate this relationship: 
 
 O(u, 0) = o(x,y)e−2πiuxdxdy∫∫         (CT-4) 
 
where the order of integration can be interchanged yielding 
 
 O(u,0) = o(x, y)dy∫[ ]∫ ⋅e−2πiuxdx .       (CT-5) 
 
The term within the bracket is the summation or integration of o(x,y) over all y holding x 
constant (a line integral for each x).  This is called the projection of the object, calculated 
perpendicular to the x-axis.  This projection can be referred to as p0(x) and this leads to: 
 
 dxexpuOuP iuxπ2

00 )()0,()0,( −∫==        (CT-6) 
 
Eq. CT-6 shows that the profile P0(u,0) in the frequency domain at v = 0 corresponds to the 1-D 
Fourier transform of the projection p0(x) in the spatial domain.  Both the projection and the 
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Figure 3. Formation of a projection pθ(r) and the 
magnitude of its Fourier transform Pθ(ρ). 
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profile correspond to data acquired at θ = 0.  A more general equation for the frequency domain 
profile is: 
 
 

€ 

Pθ (s) = pθ (r)e
−2πirsdr∫        (CT-6a) 

 
The profile Pθ(s) is a central profile because its origin coincides with the origin in the frequency 
domain.  Eq. CT-6a can be shown to be true at any angle.  As stated previously if we can acquire 
data to determine the 2-D Fourier transform of the object O(u,v) we can reconstruct it using Eqn. 
CT-2.  The task is then to fill in the 2-D Fourier space by acquiring a complete set of projections 
about the object, and this can be done using projections spanning 0-180 degrees.  The following 
points summarize the theoretical requirements and basis for tomographic reconstruction in 
computed tomography: 
 
• Projections pθ(r) are summations along a line, or line integrals of the object function values, 

at projection angles θ. 
• For each spatial domain projection pθ(r) there is a corresponding frequency domain central 

profile Pθ(s).  Central Slice Theorem. 
• If a sufficient number of spatial domain projections are acquired then a sufficient number of 

central profiles Pθ(s) can be calculated to properly complete the 2-D Fourier domain.  An 
inverse Fourier transform can be used to calculate o(x,y) from equation CT-2. 

 
These points help to explain how a tomographic image can be calculated from projections.  
There are various methods to acquire data and x-ray and nuclear medicine computed 
tomographic images, but all are based on this basic mathematical description of computed 
tomography.  Several will be discussed later in this chapter. 
 
A challenge for CT image acquisition is to acquire projection data that effectively fill the 2-D 
frequency domain.  It is necessary that the acquired data conform to the definition of a 
projection.  A projection can be mathematically defined using a delta function as  
 
 pθ (r) = o(x,y)δ(r − x cos(θ) − ysin(θ∫∫ ))dxdy      (CT-7) 
 
To help understand the arguments of the delta function in this equation we need the 
correspondence between locations in unrotated (x, y) and rotated (x’, y’) coordinate systems.  
The mathematical relationship for a CCW rotation of angle θ about the origin is determined 
using the following transform matrix format: 
 

   
x'
y'
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

cos(θ) sin(θ)
sin(−θ ) cos(θ )
⎡ 

⎣ 
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⎥ 
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⎣ 
⎢ 
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⎦ 
⎥       (CT-8) 

 
From CT-8 we see that x’ = x cos(θ) + y sin(θ).  Integration in CT-7 is therefore constrained to 
be along a line r = x’ by  δ(r-x’) which is parallel to the y’ axis (see Fig. 3). The rotational origin 
for x-ray CT is the axis of rotation or the axis about which projections are acquired.  Equation 
CT-8 can be used for backprojection and reprojection algorithms since given x’, y’, and theta we 
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can calculate x and y.  During projection for each x’ (or r) we sum along y’ to calculate pθ(r).  For 
backprojection we divide the projection data pθ(r) equally along y’. 
 
In x-ray and nuclear medicine tomographic imaging a set of projections pθ(r) are usually 
acquired by rotation of the imaging device through a series of angles (θ) about the object.  Since 
the projection at angle θ should be identical to that at angle θ + 180°, only 180° scanning is 
required.  This is confirmed by the fact that the 2-D Fourier space can be completely filled with 
profiles spanning 180 degrees.  For various reasons, the scan angle extent is usually larger than 
180°.  However, angular extent smaller than 180° will not completely fill the 2-D Fourier space 
of the object and leads to reconstruction errors.  Note:  Incomplete filling of the 2-D Fourier 
space can be partly compensated by interpolating values between missing profiles or reducing 
the highest frequency used during reconstruction, but both lead to reduced spatial resolution. 
 
As stated in the introduction a projection must be composed of line integrals (i.e. summation) of 
object values.  This requirement is especially important in x-ray CT since raw projection data are 
the intensity of the x-rays transmitted through the object, not an integration of object values.  To 
understand how x-ray CT projection data are converted to a proper set of line integrals summing 
object values, the characteristics of the raw x-ray projection data need to be analyzed.  The x-ray 
intensity at a location r in a projection is modeled as follows: 
 
 

€ 

Iθ (r) = I0(r)e
−µ(x,y )δ [r−x cos(θ )−y sin(θ )]dxdy∫∫       (CT-9) 

 
where I0(r) is the intensity at “r” without the object and µ(x,y) the linear attenuation coefficient at 
object location x,y.  Dividing both sides of Eq. CT-9 by I0(r) and taking the natural logarithm 
leads to an equation for the integral of linear attenuation coefficients, i.e. projection pθ(r) along a 
line defined by x’ = r: 
 
 pθ (r) = ln(

I0(r)
Iθ (r) ) = µ(x, y)δ (r − x cos(θ ) − y sin(θ ))dxdy∫∫    (CT-10) 

 
For x-ray CT the raw projection data is converted logarithmically to proper projection data using 
equation CT-10.  Inspection of Eq. CT-10 shows that in x-ray CT the values computed during 
reconstruction are linear attenuation coefficients (µ). 
 
While x-ray CT calculates images that are linear attenuation coefficients, a different scheme was 
devised to help standardize CT numbers.  Hounsfield suggested that it would be useful to report 
CT values as relative attenuation with the attenuation coefficient of water being the reference 
point.  This ultimately led to the following equation for CT numbers: 
 

   1000# xCT
water

water

µ
µµ −

=  

 
Inspection of CT#’s shows that the CT#water = 0 and CT#air = -1000.  Since the linear attenuation 
of fat is less than that of water fat CT#fat <0.  Most other soft tissues are positive, while that of 
dense bone can be as high as 3000.  The adoption of CT numbers has helped to simplify 
communication of image values in x-ray CT.  Importantly, when properly calibrated CT numbers 
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can be less sensitive to changes in kVP and beam filtration than are linear attenuation 
coefficients. Can you explain why? 
 

While there are several approaches to 
determine o(x,y) from O(u,v), the most 
basic, though not mathematically 
correct, is called simple backprojection.  
Simple backprojection is an attempt to 
redistribute line integral data into the 
object.  Backprojection uniformly 
redistributes the line integral values 
within a circle of diameter equal to the 
length of the projections.  This circle is 
called the scan circle.  The entire object 
must reside in the scan circle to be 
correctly reconstructed, otherwise it 
will not be sampled at each projection. 
Simple backprojection (unfiltered 
backprojection) fails to correctly 
reconstruct the object from its 
projections (Figure 4).   
 
 

This is easy to understand from the following example: 
 
Example 1.  If a point-like object (centered in the scan circle) is imaged, each projection will be 
identical, having data only at its center.  Backprojection of the first projection divides its value 
(sum of image date) equally along a line through the origin within the scan circle.  A similar 
uniformly filled line will be backprojected for each projection angle.  During each 
backprojection new values are added to previous values.  At the center of the image each 
backprojection contributes to the sum; however, backprojections still sum further away from the 
center. Therefore, the image of the point source reconstructed using such simple backprojection 
is blurred.  This image is in fact the point spread function (psf) of image formation using simple 
backprojection (Figure 5).  This psf diminishes with distance from the center following a “1/r” 
trend, and results from the overlapping of backprojected lines, where all lines overlap at the 
origin.  
 
There is another way to look at the problem associated with simple backprojection.  If simple 
backprojection worked properly then reprojection from the backprojected image should produce 
projections identical to those from the real object.  This cannot happen due to the overlapping of 
different projections, which produce non-zero values of line integrals away from the center or 
origin during reprojection.  The only solution to this dilemma is for the projection data to be 
modified to include both positive and negative values to remove such.  This will become obvious 
soon. 
 

Object

Unfiltered 
Backprojection
with Sum

Filtered
Backprojection
with Sum

256x256 object
Sinogram 402 projections
  with 256 samples/projection
Ramp for filtered BP

 
Figure 4.  Filtered backprojection image is a faithful 
reproduction while simple (unfiltered) backprojection 
image is blurred. 
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While simple backprojection forms a blurred version of the object (middle Fig. 5), a special 
ramp-filtered backprojection approach (right Fig. 5) produces a nearly perfect replica of the 
object.  The origin of this problem can be seen by inspection of the point spread function of 
simple back projection (Figure 5).  The profile through this spread function reveals that the 
simple backprojection psf(r) drops off as 1/r.  There are two approaches to remove the blurring 
introduced by this 1/r broadening of psf(r).  One method to correct for the blurring is to 
deconvolve the simple backprojection image with an appropriate function in the spatial domain.  
However, this is not the most straightforward approach, and a Fourier domain approach is 
usually preferred.  Blurring in the spatial domain is described mathematically as follows: 
 
 i(x,y) = o(x,y) ⊗⊗ psf(x,y)       (CT-11) 
 
where psf(x,y) = k/r and r = (x2 + y2)1/2.  The corresponding equation in the Fourier domain is 
 
 I(u,v) = O(u,v) STF(u,v).       (CT-12) 

where STF(u,v) = K/ρ, ρ = (u2 + v2)1/2. This STF shows a need for reduction in frequency 
response as ~1/ρ for simple backprojection.  For realistic point spread functions, neither k/r nor 
K/ρ go to ∞ as their denominators go to zero. In fact for real CT the value of K/ρ is equal to an 
integral about k/r near r=0.  We will see how this can be calculated for discrete CT data later.  
The drop off in frequency response in I(u,v) can be correctly compensated by multiplication of 
I(u,v) by the inverse of STF which is ρ/K to calculate O(u,v) as follows: 

Point Image

Simple Backprojection Ramp-Filtered Backprojection

256x256 sinogram

256x256 array

Profile for Simple
Backprojection

Profile for Ramp- Filtered
Backprojection

Sharp
Point Image

Blurred
Point Image

 
Figure 5.  Comparison of point spread functions for simple and ramp-filtered backprojection 
methods. 
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 O(u,v) = I(u,v) ⋅ ρ/K        (CT-13) 
 
The ρ/K term is a straight line when plotted as a function of ρ and is therefore referred to as a  
“ramp” filter, and the processing indicated in Equation CT-13 is called “ramp filtering”.  The 
ramp filter compensates for the drop in high frequency response due to the oversampling of low 
frequencies, or undersampling of high frequencies associated with summation and 
backprojection. 
 
Ramp filtering is generally done on a projection-by-projection basis to provide filtered 
projections as follows 
 
 p’θ (r) =ℑ

-1[Pθ (s) s/K]       (CT-14) 
 
where s is equivalent to ρ from equation CT-13.  Backprojection of p’θ (r) is called ramp filtered 
backprojection and its effect is to create an almost perfect reconstruction (Figure 5). 
 
A more intuitive description of the requirement of a ramp filter for proper CT reconstruction 
from projections follows from inspection of pθ(r), Pθ(s) and PSF(u,v) for a point object δ(x,y).  
For a perfect CT imager, i.e. no unsharpness, each pθ(r) will be a 1-D delta function δ(r) and its 
Fourier transform, Pθ(s), will be a constant = 1.  To model simple backprojection with sumation 
in the u,v domain each Pθ(s) must be summed into the u,v domain at the proper angle.  This 
means that the response at the origin [PSF(u=0,v=0)] will be equal to Np where Np is the number 
of projections overlapping at the origin, since the central slice theorem states that all Pθ(s) go 
through the origin.  Also, PSF(u,v) will fall off as 1/s moving away from the origin.  This is 
because at each radial distance from the origin 2Np projections are summed along a circle of 
circumference = 2πρ, so the magnitude drops off with increasing radius as Np /πs (here s and ρ 
are used synonymously).  To achieve a constant frequency response (the correct Fourier 
transform of δ(x,y)) then PSF(s) must be multiplied by a frequency compensation term like πs/ 
Np.  While this description does not exactly match that in Eq. CT-13, the difference falls out with 
normalization of the final data. 
 
Note:  If the Pθ(s) were put into the u,v domain as an average rather than a sum the compensation 
would occur automatically. 
 
The need to increase magnitude as a function of frequency stems from the fact that while each 
profile can have perfect frequency response, when summed into the 2-D Fourier space the net 
magnitude falls off following 1/ρ.  Compensation for this high frequency drop off results in an 
‘equalized’ frequency response and explains the need for the ramp filter.  Since it is simpler to 
perform the filtering in 1-D, Equation CT-14 is usually used.  Also, when using this technique, 
reconstruction can be done during data acquisition, where each acquired projection is filtered and 
backprojected as soon as it is acquired. Reconstructed slice images are available almost 
immediately following the acquisition of a complete set of projection data.  Filtered 
backprojection implements the Radon transform. 
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It is certainly possible to reconstruct o(x,y) directly from O(u,v) by taking the inverse Fourier 
transform bypassing the need for filtered backprojection.  However, unlike filtered 
backprojection where backprojection can be done immediately following acquisition of each new 
projection, the inverse Fourier transform method must wait until all projections have been 
tranformed to Fourier space, i.e. the end of the scan.  Early systems were very slow and filtered 
backprojection soon became the preferred approach.  It should be noted that filling in O(u,v) 
from Fourier transform of projections can be done carefully to avoid summing at the origin.  One 
way to do this is to sum and fill normally, but save a buffer of how many entries were made, and 
correct to the average values once all projections are acquired. 
 
Projection data do not have to be acquired using parallel lines for integration.  For improved 
geometrical efficiency fan beam geometry is commonly used in x-ray CT.  The fan beam line 
integrals can be sorted into parallel projections before processing or processed using a different 
filter.  However, all discussions in this chapter focus on parallel beam type projections and 
reconstructions. 
 
CT.3 Practical Considerations. 
 
CT.3.1 Number of Samples per Projection.  The number of samples per projection, Ns, can be 
estimated using Shannon’s sampling theorem.  Recall that this theorem specifies that the 
sampling frequency fs ≥ 2 fmax where fmax is the highest frequency or bandwidth limit of the 
imaging system.  The number of samples per projection based on the sampling theorem is  
 
  Ns = 2fmax x FOV       (CT-15) 
 
Example 1:  For head CT fmax ~ 1 lp/mm and FOV = 256 mm, so Ns = 512 samples. 
 
Example 2:  For Nuclear Medicine 
using single photon emission 
computed tomography (SPECT) 
images with fmax ~ 1 lp/cm Ns = 50 
for 25 cm FOV (would likely use 
64) and Ns = 80 for a 40 cm FOV 
(would likely use 128). 
 
CT.3.2 Number of Projections.  
The number of projections (Np) is 
calculated to ensure complete filling 
of the u,v space up to the highest 
frequency.  This is accomplished if 
the number of samples/distance 
along the largest circle in u,v space 
is equal to number of 
samples/distance along the radial 
direction.  The number of samples in 
a projection Ns determines the u & v 
dimension of the corresponding 
Fourier space (# rows, # columns).  

Point Image

256x256 array

256x256
 Sinogram

402x256
 Sinogram

Sharp
Point Image

Sharp
Point Image

Profile of point image
from 256x256  sinogram

from 256x256
 Sinogram

from 402x256
 Sinogram

Profile of point image
from 402x256  sinogram  

Figure 6.  Example shows improvement in background 
around reconstructed point when number of projections Np 
= π/2⋅Ns where Ns is the number of samples per projection. 
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Ns therefore determines the number of points in the diameter of the largest circle in u,v.  The 
number of points needed along the circumference of this circle to keep samples/distance constant 
is π x diameter or π Ns.  Since each projection profile provides two points along this 
circumference the minimum number of projections is one-half this value or 
 
  Np = π/2⋅Ns.        (CT-16) 
 
Figure 6 illustrates the improvement in a reconstructed point following the guideline given in Eq. 
CT-16.  The total number of line integrals acquired is the number of samples per projection times 
the number of projections = NsNp. The following table summarizes some common combinations 
of Ns and Np: 
 

Application Ns Np # line integrals 
Nuc Med 64 101 6464 
Nuc Med 128 201 25,728 
x-ray CT 512 804 411,648 
x-ray CT 1024 1608 1,646,592 

 
These table values may be larger or smaller depending on the many factors, including different 
detector design and spatial resolution needs. 
 
CT.3.3 Net CT Filter Response.  Though 
the mathematical form of the ramp filter for 
theoretically correct CT reconstruction is 
well known, in most cases the net filter must 
be modified to reduce output at higher 
frequencies where SNR is often very low.  
This is accomplished using a low-pass filter.  
The bandwidth of the low pass filter is user 
selectable, though most x-ray CT consoles 
only provide options such as high-, medium-
, and low-resolution filters.  PET and SPECT 
systems generally provide a wider range of 
filters. A common low-pass filter is a 
Butterworth filter.  It is a two-parameter 
filter and has a frequency response as 
follows 
 
  Butterworth(u) = 1

1 +
2 N

u

0u( )
      (CT-17) 

 
where u0 is the frequency where the filter output = 1/2 (called the bandwidth of the filter) and N 
is the order of the filter.  The filter shape around u0 changes with increasing order (Figure 7).  For 
large N the filter magnitude approaches 1 for values of u < u0 and 0 for u > u0.  The selection of 
N is based on the frequency response needs away from the designated bandwidth.  The 
bandwidth determines the point where 1/2 magnitude is desired. 
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Figure 7. Butterworth filter frequency response. 
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The net frequency response is determined as the product of the ramp filter and the user-selected 
low-pass filter (Figure 8).  The net filter response peaks somewhere below u0, tracks the ramp at 
lower frequencies, and tends to zero at higher frequencies. 
 
Figure 9 shows the MTF and noise of a tomographic imager prior to application of the net ramp 
filter.  It demonstrates the need to taper the output of the filter at high frequencies where the SNR 
is poor while following the theoretical ramp at lower frequencies. 
 
Low-pass filtering is critical in nuclear medicine (SPECT & PET) because the projection data are 
often very noisy.  In these cases the low-pass filter bandwidth is set at approximately 1/2 the 
Nyquist limiting frequency as illustrated in Figure 9.  While such low-pass filters improve the 
SNR in reconstructed images they degrade resolution, with frequency response above u0 being 
attenuated. 

 
In x-ray CT similar low-pass filtering is done, but u0 appears to be well above 1/2 of the Nyquist 
limit, since image detail is maintained with good SNR over a broader range of frequencies for 
most cases.  Smoother images result for u0 near 1/2 Nyquist limit with sharpness improving as u0 
is increased.  The higher SNR at any given frequency for x-ray CT vs. Nuclear medicine CT 
systems is due to the much larger number of x-ray quanta acquired in x-ray CT. 
 
CT.3.4 Beam Hardening.  A problem that results from using a polyenergetic x-ray beam for CT 
is that the beam will be harder (mean energy higher) for thicker body regions, due to the longer 
attenuation path.  The most common example of this is seen for imaging a cylindrical phantom 
(Figure 10).  Note that higher mean energy means less attenuation and this in seen in a smaller 
linear attenuation coefficient µ. 
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Figure 8. Ramp and net ramp modified by Butterworth 
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The profile of a reconstructed 
CT image will be darker in the 
middle since µ is proportional 
to CT#.  The cupping seen in 
the graph of Figure 10 is the 
result of beam hardening in x-
ray CT images. 
 
There are several ways to 
resolve this beam-hardening 
problem.  A commonly used 
method is to pre-harden the x-
ray beam with extra aluminum 
filtration so that the additional 
hardening caused by the 
patient leads to a smaller 
percentage change in the mean 
x-ray beam energy. This 

approach is supplemented by use of a higher KVP beam (125-130 KVP) than for routine 
projection radiographic imaging.  A second method to reduce the beam hardening effect seen in 
Figure 10 is to use a “bow-tie” shaped aluminum filter to pre-harden the periphery (i.e. ray #2) 
more than the center of the beam (ray #1).  This can be effective for cylindrical objects, but is not 
an acceptable general solution.  A third method, and one not used much anymore, is to surround 
the object with a water bag.  This was mostly used to reduce the dynamic range of x-ray intensity 
between detectors in the middle of the FOV and those at the periphery.  Early CT detectors were 
limited in dynamic range, the ratio of highest to lowest x-ray intensity seen by the detectors. 
 
A common method to correct for periphery-to-center beam hardening is based on a measured 
ratio of I0 (no-attenuation signal) to I (attenuated signal).  The logarithm of the ratio of I0 to I if 
mean energy does not change should be a line of constant slope = µ when plotted versus 
diameter of a cylindrical water phantom (Figure 
11). This follows from the simple equation 
describing attenuation of x-rays 
 

ln(I0/I) = µ d   (CT-18) 
 
The graphical data from Figure 11 are used to 
correct measured values of ln(I0/I) to theoretical 
values using a look-up table.  In the example a 
value of ln(I0/I) = 5 would be mapped to a value 
of 6.  This is a reasonably good method to correct 
the periphery-to-center beam-hardening problem 
for soft tissues and near cylindrical body sections.  
Some form of this correction is used on all x-ray 
CT machines. 
 
Another beam hardening problem often seen in head CT images comes from large differences in 
attenuation for rays traversing bone vs. soft tissue.  This beam hardening cannot be well 
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Figure 10.  X-ray CT Beam hardening. 
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Figure 11.  Beam hardening correction. 
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corrected without some form of iterative processing.  The result is a streak artifact near sharp 
edges of bone. 
 
CT.4  Other Considerations. 
 
Attenuation correction for SPECT and PET are required to provide true line integrals for 
projections.  PET attenuation correction is quite good though SPECT attenuation correction is 
sometimes poor.  Both can use 360-degree data acquisition, and this is needed for good 
attenuation correction.  PET acquires multiple slices simultaneously. SPECT acquires multiple 
slices in one rotation.  X-ray CT now can acquire multiple sections with high-speed helical 
scanners. 
 
Helical CT uses interpolation from helical to parallel projections before reconstruction. 
 
Fastest CT is a scanning electron beam with a stationary, large-diameter anode. 
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Homework. 
 
1.  Calculate the projections (Pθ(r) from Eq. CT-10) at 0° and 45° for a square object 10 cm on 
each side, if µ = 0.2 cm-1.  Use the coordinate system given in Figure 2. 
 
 
2.  You are working on a research project to build a micro CT system with x, y, and z spatial 
resolution of 10 microns and a field of view of 5 cm.  The system uses a pencil beam that is 
scanned across the object and then the object is rotated.  The object is translated (stepped) in the 
z direction and the process is repeated.  What values would you select for each of the following 
and show how you arrived at your conclusion: 
 

a.  Dimensions of x-ray beam 
b.  Distance between steps in the z direction 
c.  Number of samples per projection 
d.  Number of projections 
e.  Image matrix size 
f.  Form of the reconstruction filter 

 
3.  A simple formula can be used to estimate the form of the ramp filter for filtering the Fourier 
transform of projections.  Given that Ramp(u) = 1/Np @ u = 0 and Ramp(u) = 1 @ u = umax,  
show that 
 

   Ramp(u) =

1 − 1
pN

sN
2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

u +
1
pN

 

 
4.  The mean linear attenuation coefficient for a 40 cm water phantom is 0.2 cm-1.  What is the 
dynamic range of x-ray intensity seen by the CT detectors?  Can this range be properly recorded 
with a 16 bit binary data format? 
 
 
 
5.  You have been asked to determine the center of rotation (COR) of a SPECT camera.  Explain 
how you might do this using Equation CT-3.  Also, suppose that the SPECT camera is wobbling 
about its COR during rotation (maybe because of gravity), how might you detect this problem? 


